Fast Exact Algorithm for L(2, 1)-Labeling of Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10108191" target="_blank" >RIV/00216208:11320/11:10108191 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-20877-5_9" target="_blank" >http://dx.doi.org/10.1007/978-3-642-20877-5_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-20877-5_9" target="_blank" >10.1007/978-3-642-20877-5_9</a>
Alternative languages
Result language
angličtina
Original language name
Fast Exact Algorithm for L(2, 1)-Labeling of Graphs
Original language description
An L(2,1)-labeling of a graph is a mapping from its vertex set into nonnegative integers such that the labels assigned to adjacent vertices differ by at least 2, and labels assigned to vertices of distance 2 are different. The span of such a labeling isthe maximum label used, and the L(2,1)-span of a graph is the minimum possible span of its L(2,1)-labelings. We show how to compute the L(2,1)-span of a connected graph in time O *(2.6488 n ). Previously published exact exponential time algorithms were gradually improving the base of the exponential function from 4 to the so far best known 3.2361, with 3 seemingly having been the Holy Grail.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
6648
Issue of the periodical within the volume
6648
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
82-93
UT code for WoS article
—
EID of the result in the Scopus database
—