Determining the L(2, 1)-Span in Polynomial Space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10131333" target="_blank" >RIV/00216208:11320/12:10131333 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-34611-8_15" target="_blank" >http://dx.doi.org/10.1007/978-3-642-34611-8_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-34611-8_15" target="_blank" >10.1007/978-3-642-34611-8_15</a>
Alternative languages
Result language
angličtina
Original language name
Determining the L(2, 1)-Span in Polynomial Space
Original language description
An L(2,1)-labeling of a graph is a mapping from its vertex set into a set of integers {0,..,k} such that adjacent vertices get labels that differ by at least 2 and vertices in distance 2 get different labels. The main result of the paper is an algorithmfinding an optimal L(2,1)-labeling of a graph (i.e. an L(2,1)-labeling in which the largest label is the least possible) in time O *(7.4922^n ) and polynomial space. Moreover, a new interesting extremal graph theoretic problem is defined and solved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
7551
Issue of the periodical within the volume
Summer
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
126-137
UT code for WoS article
—
EID of the result in the Scopus database
—