Determining the L(2,1)-span in polynomial space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191014" target="_blank" >RIV/00216208:11320/13:10191014 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.dam.2013.03.027" target="_blank" >http://dx.doi.org/10.1016/j.dam.2013.03.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2013.03.027" target="_blank" >10.1016/j.dam.2013.03.027</a>
Alternative languages
Result language
angličtina
Original language name
Determining the L(2,1)-span in polynomial space
Original language description
A k-L(2, 1)-labeling of a graph is a mapping from its vertex set into a set of integers {0, ... , k} such that adjacent vertices get labels that differ by at least 2 and vertices in distance 2 get different labels. The main result of the paper is an algorithm finding an optimal L(2, 1)-labeling of a graph (i.e. an L(2, 1)-labeling in which the largest label is the least possible) in time 0*(7.4922(n)) and polynomial space. Then we adapt our method to obtain a faster algorithm for k-L(2, 1)-labeling, where k is a small positive constant. Moreover, a new interesting extremal graph theoretic problem is defined and solved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
161
Issue of the periodical within the volume
13-14
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
2052-2061
UT code for WoS article
000320680400025
EID of the result in the Scopus database
—