Extending Partial Representations of Interval Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10108251" target="_blank" >RIV/00216208:11320/11:10108251 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-20877-5_28" target="_blank" >http://dx.doi.org/10.1007/978-3-642-20877-5_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-20877-5_28" target="_blank" >10.1007/978-3-642-20877-5_28</a>
Alternative languages
Result language
angličtina
Original language name
Extending Partial Representations of Interval Graphs
Original language description
We initiate the study of the computational complexity of the question of extending partial representations of geometric intersection graphs. In this paper we consider classes of interval graphs - given a collection of real intervals that forms an intersection representation of an induced subgraph of an input graph, is it possible to add intervals to achieve an intersection representation of the entire graph? We present an O(n^2) time algorithm that solves this problem and constructs a representation ifone exists. Our algorithm can also be used to list all nonisomorphic extensions with O(n^2) delay.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
6648
Issue of the periodical within the volume
6648
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
276-285
UT code for WoS article
—
EID of the result in the Scopus database
—