Approximation Algorithms and Semidefinite Programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10100319" target="_blank" >RIV/00216208:11320/12:10100319 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximation Algorithms and Semidefinite Programming
Original language description
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. This book follows the "semidefinite side" of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefiniteprogramming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
978-3-642-22014-2
Number of pages
262
Publisher name
SPRINGER
Place of publication
Heidelberg
UT code for WoS book
—