Computing all maps into a sphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10100952" target="_blank" >RIV/00216208:11320/12:10100952 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/12:10159293
Result on the web
<a href="http://siam.omnibooksonline.com/2012SODA/index.html" target="_blank" >http://siam.omnibooksonline.com/2012SODA/index.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computing all maps into a sphere
Original language description
We present an algorithm for computing [X,Y], i.e., all homotopy classes of continuous maps X -} Y , where X and Y are topological spaces given as finite simplicial complexes, Y is (d-1)-connected for some d } 1 (for example, Y can be the d-dimensional sphere), and dim X { 2d-1. These conditions on X and Y guarantee that [X,Y] has a natural structure of a fi nitely generated Abelian group, and the algorithm finds generators and relations for it. We combine several tools and ideas from homotopy theory (such as Postnikov systems, simplicial sets, and obstruction theory) with algorithmic tools from effective algebraic topology (objects with effective homology).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
ISBN
978-1-61197-211-5
ISSN
1557-9468
e-ISSN
—
Number of pages
10
Pages from-to
1-10
Publisher name
Society for Industrial and Applied Mathematics
Place of publication
Philadelphia, USA
Event location
Kyoto, Japonsko
Event date
Jan 17, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—