A lambda-dendroid with two shore points whose union is not a shore set
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10103605" target="_blank" >RIV/00216208:11320/12:10103605 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0166864111003348" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0166864111003348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2011.07.024" target="_blank" >10.1016/j.topol.2011.07.024</a>
Alternative languages
Result language
angličtina
Original language name
A lambda-dendroid with two shore points whose union is not a shore set
Original language description
A subset of a given continuum is called a shore set if there is a sequence of continua in the complement of this set converging to the whole continuum with respect to the Hausdorff metric. A point is called a shore point if the one point set containing this point is a shore set. We present several examples of a lambda-dendroid which contains two disjoint shore continua whose union is not a shore set. This answers a question of Van C. Nall in negative.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
159
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
69-74
UT code for WoS article
000297562900009
EID of the result in the Scopus database
—