Union of Shore Sets in a Dendroid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F14%3A00215347" target="_blank" >RIV/68407700:21110/14:00215347 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/14:10146012
Result on the web
<a href="http://dx.doi.org/10.1016/j.topol.2013.10.020" target="_blank" >http://dx.doi.org/10.1016/j.topol.2013.10.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2013.10.020" target="_blank" >10.1016/j.topol.2013.10.020</a>
Alternative languages
Result language
angličtina
Original language name
Union of Shore Sets in a Dendroid
Original language description
A subset of a dendroid is called a shore set if there is a sequence of subcontinua disjoint with the given set which converges to the whole continuum. We are dealing with the question when the union of finitely many shore sets is a shore set. We give a positive answer in the case of planar smooth dendroids and closed disjoint shore sets and we present a simple example of a planar dendroid in which the union of two disjoint closed shore sets is not a shore set. The second result answers a question of A.Illanes. Finally, we show that the union of a shore point and a closed shore set in a dendroid need not to be a shore set but we prove a positive result in the case of a planar dendroid.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and Its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
161
Issue of the periodical within the volume
JAN 1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
206-214
UT code for WoS article
000329475900015
EID of the result in the Scopus database
—