On Kelvin-Voigt model and its generalizations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124068" target="_blank" >RIV/00216208:11320/12:10124068 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/eect.2012.1.17" target="_blank" >http://dx.doi.org/10.3934/eect.2012.1.17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/eect.2012.1.17" target="_blank" >10.3934/eect.2012.1.17</a>
Alternative languages
Result language
angličtina
Original language name
On Kelvin-Voigt model and its generalizations
Original language description
We consider a generalization of the Kelvin-Voigt model where the elastic part of the Cauchy stress depends non-linearly on the linearized strain and the dissipative part of the Cauchy stress is a nonlinear function of the symmetric part of the velocity gradient. The assumption that the Cauchy stress depends non-linearly on the linearized strain can be justified if one starts with the assumption that the kinematical quantity, the left Cauchy-Green stretch tensor, is a nonlinear function of the Cauchy stress, and linearizes under the assumption that the displacement gradient is small. Long-time and large data existence, uniqueness and regularity properties of weak solution to such a generalized Kelvin-Voigt model are established for the non-homogeneous mixed boundary value problem. The main novelty with regard to the mathematical analysis consists in including nonlinear (non-quadratic) dissipation in the problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Evolution Equations and Control Theory
ISSN
2163-2480
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
17-42
UT code for WoS article
—
EID of the result in the Scopus database
—