All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forbidden graphs for tree-depth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125700" target="_blank" >RIV/00216208:11320/12:10125700 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ejc.2011.09.014" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.09.014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2011.09.014" target="_blank" >10.1016/j.ejc.2011.09.014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forbidden graphs for tree-depth

  • Original language description

    For every k }= 0, we define G(k) as the class of graphs with tree-depth at most k, i.e. the class containing every graph G admitting a valid colouring rho : V(G) -> {1, ... , k} such that every (x, y)-path between two vertices where rho(x) = rho(y) contains a vertex z where rho(z) > rho(x). In this paper, we study the set of graphs not belonging in G(k) that are minimal with respect to the minor/subgraph/induced subgraph relation (obstructions of G(k)). We determine these sets for k {= 3 for each relation and prove a structural lemma for creating obstructions from simpler ones. As a consequence, we obtain a precise characterization of all acyclic obstructions of G(k) and we prove that there are exactly 1/2 2(2k-1-k)(1+2(2k-1-k)). Finally, we prove thateach obstruction of G(k) has at most 2(2k-1) vertices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    969-979

  • UT code for WoS article

    000301306200020

  • EID of the result in the Scopus database