Non-three-colorable common graphs exist
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125701" target="_blank" >RIV/00216208:11320/12:10125701 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0963548312000107" target="_blank" >http://dx.doi.org/10.1017/S0963548312000107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548312000107" target="_blank" >10.1017/S0963548312000107</a>
Alternative languages
Result language
angličtina
Original language name
Non-three-colorable common graphs exist
Original language description
A graph is common if the number of its copies in a graph and its complement is minimized for random graphs. We show that the wheel on six vertices is a common graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics Probability and Computing
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
734-742
UT code for WoS article
000307179400006
EID of the result in the Scopus database
—