On tripartite common graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361762" target="_blank" >RIV/68407700:21340/22:00361762 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/105477" target="_blank" >http://hdl.handle.net/10467/105477</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548322000074" target="_blank" >10.1017/S0963548322000074</a>
Alternative languages
Result language
angličtina
Original language name
On tripartite common graphs
Original language description
This work provides several new classes of tripartite common graphs. A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring of the complete graph K-n is asymptotically minimised by the random colouring. Burr and Rosta, extending a famous conjecture of Erdős, conjectured that every graph is common. The conjectures of Era's and of Burr and Rosta were disproved by Thomason and by Sidorenko, respectively, in the late 1980s. The first new class are the so-called triangle trees, which generalises two theorems by Sidorenko and answers a question of Jagger, Šťovíček, and Thomason from 1996. We also prove that, somewhat surprisingly, given any tree T, there exists a triangle tree such that the graph obtained by adding T as a pendant tree is still common. Furthermore, we show that adding arbitrarily many apex vertices to any connected bipartite graph on at most 5 vertices yields a common graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics, Probability and Computing
ISSN
0963-5483
e-ISSN
1469-2163
Volume of the periodical
31
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
907-923
UT code for WoS article
000801041900001
EID of the result in the Scopus database
—