A version of the Loebl–Komlós–Sós Conjecture for Skew Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00523723" target="_blank" >RIV/67985807:_____/20:00523723 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10421588
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2020.103106" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2020.103106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2020.103106" target="_blank" >10.1016/j.ejc.2020.103106</a>
Alternative languages
Result language
angličtina
Original language name
A version of the Loebl–Komlós–Sós Conjecture for Skew Trees
Original language description
Loebl, Komlós, and Sós conjectured that any graph with at least half of its vertices of degree at least contains every tree with at most edges. We propose a version of this conjecture for skew trees, i.e., we consider the class of trees with at most edges such that the sizes of the colour classes of the trees have a given ratio. We show that our conjecture is asymptotically correct for dense graphs. The proof relies on the regularity method. Our result implies bounds on Ramsey number of several trees of given skew.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
August 2020
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
103106
UT code for WoS article
000541875000005
EID of the result in the Scopus database
2-s2.0-85082854243