All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A version of the Loebl–Komlós–Sós Conjecture for Skew Trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00523723" target="_blank" >RIV/67985807:_____/20:00523723 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10421588

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103106" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2020.103106</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103106" target="_blank" >10.1016/j.ejc.2020.103106</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A version of the Loebl–Komlós–Sós Conjecture for Skew Trees

  • Original language description

    Loebl, Komlós, and Sós conjectured that any graph with at least half of its vertices of degree at least contains every tree with at most edges. We propose a version of this conjecture for skew trees, i.e., we consider the class of trees with at most edges such that the sizes of the colour classes of the trees have a given ratio. We show that our conjecture is asymptotically correct for dense graphs. The proof relies on the regularity method. Our result implies bounds on Ramsey number of several trees of given skew.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    August 2020

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    28

  • Pages from-to

    103106

  • UT code for WoS article

    000541875000005

  • EID of the result in the Scopus database

    2-s2.0-85082854243