All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An approximate version of the Loebl-Komlós-Sós conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00004592" target="_blank" >RIV/00216208:11320/07:00004592 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    An approximate version of the Loebl-Komlós-Sós conjecture

  • Original language description

    The LoeblKomlósSós conjecture states that, given a graph G and a natural number k, if at least half the vertices of G have degree at least k, then any tree with at most k edges is a subgraph of G. We prove an approximate version of this conjecture for large graphs and k linear in |V(G)|.

  • Czech name

    Aproximační verze domněnky Loebla, Komlóse a Sósové

  • Czech description

    Domněnka Loebla, Komlóse a Sósové říká, že pokud alespoň polovina vrcholů daného grafu má stupeň alespoň k, pak libovolný strom s nanejvýš k hranami je podgrafem grafu G. Dokážeme aproximační verzi této domněnky pro velké grafy a pro k lineární vzhledemk |V(G)|.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    neuvedeno

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

    249-253

  • UT code for WoS article

  • EID of the result in the Scopus database