Multiplicities of subgraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F96%3A00150787" target="_blank" >RIV/68407700:21340/96:00150787 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multiplicities of subgraphs
Original language description
A former conjecture of Burr and Rosta, extending a conjecture of Erdos, asserted that in any two-colouring of the edges of a large complete graph, the proportion of subgraphs isomorphic to a fixed graph G which are monochromatic is at least the proportion found in a random colouring. It is now known that the conjecture fails for some graphs G, including G=K-p for p greater than or equal to 4. We investigate for which graphs G the conjecture holds. Our main result is that the conjecture fails if G contains K-4 as a subgraph, and in particular it fails for almost all graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA201%2F94%2F0708" target="_blank" >GA201/94/0708: Stability and Instability in Quantum Systems.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1996
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorica
ISSN
0209-9683
e-ISSN
1439-6912
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
19
Pages from-to
123-141
UT code for WoS article
A1996UC49900007
EID of the result in the Scopus database
2-s2.0-0039338065