On a Conjecture of Thomassen Concerning Subgraphs of Large Girth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10098948" target="_blank" >RIV/00216208:11320/11:10098948 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/jgt.20534" target="_blank" >http://dx.doi.org/10.1002/jgt.20534</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.20534" target="_blank" >10.1002/jgt.20534</a>
Alternative languages
Result language
angličtina
Original language name
On a Conjecture of Thomassen Concerning Subgraphs of Large Girth
Original language description
In 1983 C. Thomassen conjectured that for every k, g is an element of N there exists d such that any graph with average degree at least d contains a subgraph with average degree at least k and girth at least g. Kuhn and Osthus [2004] proved the case g=6.We give another proof for the case g=6 which is based on a result of Furedi [1983] about hypergraphs. We also show that the analogous conjecture for directed graphs is true.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
316-331
UT code for WoS article
000292570500005
EID of the result in the Scopus database
—