All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Loebl-Komlós-Sós Conjecture: dense case

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00451115" target="_blank" >RIV/67985840:_____/16:00451115 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/16:00451115

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jctb.2015.07.004" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2015.07.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2015.07.004" target="_blank" >10.1016/j.jctb.2015.07.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Loebl-Komlós-Sós Conjecture: dense case

  • Original language description

    We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each $q>0$ there exists a number $n_0 in mathbb N$ such that for each $n>n_0$ and $k>qn$ the following holds: if $G$ is a graph of order $n$ with at least $frac{n}{2}$ vertices of degree at least $k$, then each tree of order $k+1$ is a subgraph of $G$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory. B

  • ISSN

    0095-8956

  • e-ISSN

  • Volume of the periodical

    116

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    68

  • Pages from-to

    123-190

  • UT code for WoS article

    000366344100005

  • EID of the result in the Scopus database

    2-s2.0-84947616470