Loebl-Komlós-Sós Conjecture: dense case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00451115" target="_blank" >RIV/67985840:_____/16:00451115 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/16:00451115
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2015.07.004" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2015.07.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2015.07.004" target="_blank" >10.1016/j.jctb.2015.07.004</a>
Alternative languages
Result language
angličtina
Original language name
Loebl-Komlós-Sós Conjecture: dense case
Original language description
We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each $q>0$ there exists a number $n_0 in mathbb N$ such that for each $n>n_0$ and $k>qn$ the following holds: if $G$ is a graph of order $n$ with at least $frac{n}{2}$ vertices of degree at least $k$, then each tree of order $k+1$ is a subgraph of $G$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
116
Issue of the periodical within the volume
January
Country of publishing house
US - UNITED STATES
Number of pages
68
Pages from-to
123-190
UT code for WoS article
000366344100005
EID of the result in the Scopus database
2-s2.0-84947616470