All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note on divisors of multinomial coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00316071" target="_blank" >RIV/68407700:21230/15:00316071 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00013-015-0770-5" target="_blank" >https://doi.org/10.1007/s00013-015-0770-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00013-015-0770-5" target="_blank" >10.1007/s00013-015-0770-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note on divisors of multinomial coefficients

  • Original language description

    We introduce a simple equivalence relation on ordered rooted tree graphs. As a consequence we show that $$frac{(n_0 + n_1 + n_2 + dots + n_m - 1)!}{n_0 ! n_1 ! n_2 ! ldots n_m!}$$ is divisible by ({n_0 + 1}) , where ({n, n_0, n_1, n_2 ldots , n_m}) are nonnegative integers such that ({n - 1 = n_1 + 2n_2 + cdots + mn_m, n_0 = n - (n_1 + n_2 + cdots + n_m)}) . There is at least one ({a in {n_0 + 1, n_i mid i > 0}}) such that ({a}) is an odd positive integer, and for every divisor ({d > 1}) of every ({i + 1}) where ({n_i > 0}) and ({i > 0}) , there is at least one ({b in U_i = {n_0 + 1, n_j, n_i - 1 mid j > 0 {rm and} j not = i}}) which is not divisible by ({d}) . In particular, it follows that ({C_j equiv 0 pmod {j + 2}}) , where ({j > 2}) is an odd integer such that ({j - 1}) is not divisible by 3 and ({C_j}) denotes the ({j}) th Catalan number.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archiv der Mathematik

  • ISSN

    0003-889X

  • e-ISSN

    1420-8938

  • Volume of the periodical

    104

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    7

  • Pages from-to

    531-537

  • UT code for WoS article

    000355209200005

  • EID of the result in the Scopus database

    2-s2.0-84929947120