All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A generalization of circulant Hadamard and conference matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA2001XZ3" target="_blank" >RIV/61988987:17310/19:A2001XZ3 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389005:_____/19:00504072

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0024379519300424" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0024379519300424</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2019.01.018" target="_blank" >10.1016/j.laa.2019.01.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A generalization of circulant Hadamard and conference matrices

  • Original language description

    We study the existence and construction of circulant matrices C of order n≥2 with diagonal entries d≥0, off-diagonal entries ±1 and mutually orthogonal rows. These matrices generalize circulant conference (d=0) and circulant Hadamard (d=1) matrices. We demonstrate that matrices C exist for every order n and for d chosen such that n=2d+2, and we find all solutions C with this property. Furthermore, we prove that if C is symmetric, or n-1 is prime, or d is not an odd integer, then necessarily n=2d+2. Finally, we conjecture that the relation n=2d+2 holds for every matrix C, which generalizes the circulant Hadamard conjecture. We support the proposed conjecture by computing all the existing solutions up to n=50.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01706S" target="_blank" >GA17-01706S: Mathematical-Physics Models of Novel Materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    LINEAR ALGEBRA APPL

  • ISSN

    0024-3795

  • e-ISSN

  • Volume of the periodical

    569

  • Issue of the periodical within the volume

    15 May 2019

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    241-265

  • UT code for WoS article

    000462111500013

  • EID of the result in the Scopus database

    2-s2.0-85060895400