All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Better upper bounds on the Füredi-Hajnal limits of permutations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360666" target="_blank" >RIV/00216208:11320/17:10360666 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/1.9781611974782.150" target="_blank" >http://dx.doi.org/10.1137/1.9781611974782.150</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611974782.150" target="_blank" >10.1137/1.9781611974782.150</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Better upper bounds on the Füredi-Hajnal limits of permutations

  • Original language description

    A binary matrix is a matrix with entries from the set {0,1}. We say that a binary matrix A contains a binary matrix S if S can be obtained from A by removal of some rows, some columns, and changing some 1-entries to 0-entries. If A does not contain S, we say that A avoids S. A k-permutation matrix P is a binary k x k matrix with exactly one 1-entry in every row and one 1-entry in every column. The Füredi-Hajnal conjecture, proved by Marcus and Tardos, states that for every permutation matrix P, there is a constant c_P such that for every positive integer n, every n times n binary matrix A with at least c_Pn 1-entries contains P. We show that c_P&lt;=2^O(k^{2/3} log^{7/3} k/(log log k)^{1/3}) asymptotically almost surely for a random k-permutation matrix P. We also show that c_P&lt;=2^{(4+o(1))k} for every k-permutation matrix P, improving the constant in the exponent of a recent upper bound on c_P by Fox. We also consider a higher-dimensional generalization of the Stanley-Wilf conjecture about the number of d-dimensional n-permutation matrices avoiding a fixed d-dimensional k-permutation matrix, and prove almost matching upper and lower bounds of the form (2^k)^O(n) (n!)^{d-1-1/(d-1)} and n^{-O(k)} k^Omega(n) (n!)^{d-1-1/(d-1)}, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms

  • ISBN

    978-1-61197-478-2

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    14

  • Pages from-to

    2280-2293

  • Publisher name

    ACM-SIAM

  • Place of publication

    Neuveden

  • Event location

    Barcelona

  • Event date

    Jan 16, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article