Tight bounds on the maximum size of a set of permutations with bounded VC-dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124696" target="_blank" >RIV/00216208:11320/12:10124696 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jcta.2012.04.004" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2012.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2012.04.004" target="_blank" >10.1016/j.jcta.2012.04.004</a>
Alternative languages
Result language
angličtina
Original language name
Tight bounds on the maximum size of a set of permutations with bounded VC-dimension
Original language description
The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let r(k)(n) be the maximum size of a set of n-permutations with VC-dimension k. Raz showed that r(2)(n) grows exponentially in n. We show that r(3)(n) = 2(Theta(n log alpha (n))) and for every t }= 1, we have r(2t+2) (n) = 2(Theta (n alpha(n)t)) and r(2t+3) (n) = 2 (O(n alpha(n)t log alpha(n))). We also study the maximum number p(k)(n) of 1-entries in an n x n (0.1)-matrix with no (k + 1)-tuple of columns containing all (k + 1)-permutation matrices. We determine that, for example, p(3)(n) = Theta(n alpha(n)) and p(2t+2)(n) = n2((1/t)alpha(n)t +/- O(alpha(n)t-1)) for every t }= 1. We also show that for every positive s there is a slowly growing function zeta(s)(n) (for example zeta(2t+3)(n) = 2(O(alpha t(n))) for every t }= 1) satisfying the following. For all positive integers n and B
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMBINATORIAL THEORY SERIES A
ISSN
0097-3165
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1461-1478
UT code for WoS article
000305820200007
EID of the result in the Scopus database
—