All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124696" target="_blank" >RIV/00216208:11320/12:10124696 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jcta.2012.04.004" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2012.04.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcta.2012.04.004" target="_blank" >10.1016/j.jcta.2012.04.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

  • Original language description

    The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let r(k)(n) be the maximum size of a set of n-permutations with VC-dimension k. Raz showed that r(2)(n) grows exponentially in n. We show that r(3)(n) = 2(Theta(n log alpha (n))) and for every t }= 1, we have r(2t+2) (n) = 2(Theta (n alpha(n)t)) and r(2t+3) (n) = 2 (O(n alpha(n)t log alpha(n))). We also study the maximum number p(k)(n) of 1-entries in an n x n (0.1)-matrix with no (k + 1)-tuple of columns containing all (k + 1)-permutation matrices. We determine that, for example, p(3)(n) = Theta(n alpha(n)) and p(2t+2)(n) = n2((1/t)alpha(n)t +/- O(alpha(n)t-1)) for every t }= 1. We also show that for every positive s there is a slowly growing function zeta(s)(n) (for example zeta(2t+3)(n) = 2(O(alpha t(n))) for every t }= 1) satisfying the following. For all positive integers n and B

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF COMBINATORIAL THEORY SERIES A

  • ISSN

    0097-3165

  • e-ISSN

  • Volume of the periodical

    119

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    1461-1478

  • UT code for WoS article

    000305820200007

  • EID of the result in the Scopus database