Reconfiguring colorings of graphs with bounded maximum average degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10422898" target="_blank" >RIV/00216208:11320/21:10422898 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_248RMekZ5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_248RMekZ5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2020.11.001" target="_blank" >10.1016/j.jctb.2020.11.001</a>
Alternative languages
Result language
angličtina
Original language name
Reconfiguring colorings of graphs with bounded maximum average degree
Original language description
The reconfiguration graph R-k(G) for the k-colorings of a graph G has as vertex set the set of all possible k-colorings of G and two colorings are adjacent if they differ in the color of exactly one vertex of G. Let d, k >= 1 be integers such that k >= d + 1. We prove that for every epsilon > 0 and every graph G with n vertices and maximum average degree d - epsilon, R-k(G) has diameter O(n(log n)(d-1)). This significantly strengthens several existing results. (c) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
147
Issue of the periodical within the volume
March
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
133-138
UT code for WoS article
000605462900005
EID of the result in the Scopus database
2-s2.0-85095954954