Toward Cereceda's conjecture for planar graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420390" target="_blank" >RIV/00216208:11320/20:10420390 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BJyd72nwl-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BJyd72nwl-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22518" target="_blank" >10.1002/jgt.22518</a>
Alternative languages
Result language
angličtina
Original language name
Toward Cereceda's conjecture for planar graphs
Original language description
The reconfiguration graph Rk(G) of the k-colorings of a graph G has as vertex set the set of all possible k-colorings of G and two colorings are adjacent if they differ on the color of exactly one vertex. Cereceda conjectured 10 years ago that, for every k-degenerate graph G on n vertices, Rk+2(G) has diameter O(n^2). The conjecture is wide open, with a best known bound of O(k^n), even for planar graphs. We improve this bound for planar graphs to 2^O(sqrt(n)).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
94
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
267-277
UT code for WoS article
000495137700001
EID of the result in the Scopus database
2-s2.0-85074945784