All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reconfiguring 10-colourings of planar graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422903" target="_blank" >RIV/00216208:11320/20:10422903 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1sGnnkFBzP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1sGnnkFBzP</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00373-020-02199-0" target="_blank" >10.1007/s00373-020-02199-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reconfiguring 10-colourings of planar graphs

  • Original language description

    Let ????&gt;=1 be an integer. The reconfiguration graph ????????(????) of the k-colourings of a graph G has as vertex set the set of all possible k-colourings of G and two colourings are adjacent if they differ on exactly one vertex. A conjecture of Cereceda from 2007 asserts that for every integer ℓ&gt;=????+2 and k-degenerate graph G on n vertices, ????ℓ(????) has diameter ????(????2). The conjecture has been verified only when ℓ&gt;=2????+1. We give a simple proof that if G is a planar graph on n vertices, then ????10(????) has diameter at most ????(????+1)/2. Since planar graphs are 5-degenerate, this affirms Cereceda&apos;s conjecture for planar graphs in the case ℓ=2????.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Graphs and Combinatorics

  • ISSN

    0911-0119

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    4

  • Pages from-to

    1815-1818

  • UT code for WoS article

    000536466600001

  • EID of the result in the Scopus database

    2-s2.0-85085902602