All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On constants in the Füredi-Hajnal and the Stanley-Wilf conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207379" target="_blank" >RIV/00216208:11320/09:00207379 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On constants in the Füredi-Hajnal and the Stanley-Wilf conjecture

  • Original language description

    For a given permutation matrix P, let f_P(n) be the maximum number of 1-entries in an nxn (0,1)-matrix avoiding P and let S_P(n) be the set of all nxn permutation matrices avoiding P. The Füredi-Hajnal conjecture asserts that c(P):=lim(n--}infinity) f_P(n)/n is finite, while the Stanley-Wilf conjecture asserts that s(P):=lim(n--}infinity) n-th root of S_P(n) is finite. In 2004, Marcus and Tardos proved the Füredi-Hajnal conjecture, which together with the reduction introduced by Klazar in 2000 proves the Stanley-Wilf conjecture. We focus on the values of the Stanley-Wilf limit (s(P)) and the Füredi-Hajnal limit (c(P)). We improve the reduction and obtain s(P){=2.88c(P)^2 which decreases the general upper bound on s(P) from s(P){=const^(const^(klog(k)))to s(P){=const^(klog(k)) for any kxk permutation matrix P. In the opposite direction, we show c(P)=O(s(P)^4.5). For a lower bound, we present for each k a kxk permutation matrix satisfying c(P)=Omega(k^2).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory Series A

  • ISSN

    0097-3165

  • e-ISSN

  • Volume of the periodical

    116

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000261900700003

  • EID of the result in the Scopus database