Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10123634" target="_blank" >RIV/00216208:11320/12:10123634 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jcta.2012.05.006" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2012.05.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2012.05.006" target="_blank" >10.1016/j.jcta.2012.05.006</a>
Alternative languages
Result language
angličtina
Original language name
Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns
Original language description
We prove that the Stanley-Wilf limit of any layered permutation pattern of length L is at most 4L^2, and that the Stanley-Wilf limit of the pattern 1324 is at most 16. These bounds follow from a more general result showing that a permutation avoiding a pattern of a special form is a merge of two permutations, each of which avoids a smaller pattern. We also conjecture that, for any k, the set of 1324-avoiding permutations with k inversions contains at least as many permutations of length n + 1 as those of length n. We show that if this is true then the Stanley-Wilf limit for 1324 is at most e^(pi sqrt{2/3}).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMBINATORIAL THEORY SERIES A
ISSN
0097-3165
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1680-1691
UT code for WoS article
000306863000006
EID of the result in the Scopus database
—