All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474810" target="_blank" >RIV/67985807:_____/17:00474810 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/17:00474810

  • Result on the web

    <a href="http://dx.doi.org/10.1137/140982842" target="_blank" >http://dx.doi.org/10.1137/140982842</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/140982842" target="_blank" >10.1137/140982842</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition

  • Original language description

    In a series of four papers we prove the following relaxation of the Loebl--Komlós--Sós conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(0.5+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. The method to prove our result follows a strategy similar to approaches that employ the Szemerédi regularity lemma: We decompose the graph $G$, find a suitable combinatorial structure inside the decomposition, and then embed the tree $T$ into $G$ using this structure. Since for sparse graphs $G$, the decomposition given by the regularity lemma is not helpful, we use a more general decomposition technique. We show that each graph can be decomposed into vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. In this paper, we introduce this novel decomposition technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    38

  • Pages from-to

    945-982

  • UT code for WoS article

    000404770300021

  • EID of the result in the Scopus database

    2-s2.0-85021932060