The approximate Loebl-Komlós-Sós Conjecture IV: Embedding techniques and the proof of the main result
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474808" target="_blank" >RIV/67985807:_____/17:00474808 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/17:00474808
Result on the web
<a href="http://dx.doi.org/10.1137/140982878" target="_blank" >http://dx.doi.org/10.1137/140982878</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/140982878" target="_blank" >10.1137/140982878</a>
Alternative languages
Result language
angličtina
Original language name
The approximate Loebl-Komlós-Sós Conjecture IV: Embedding techniques and the proof of the main result
Original language description
This is the last of a series of four papers in which we prove the following relaxation of the Loebl-Komlós-Sós conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(0.5+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first two papers of this series, we decomposed the host graph $G$ and found a suitable combinatorial structure inside the decomposition. In the third paper, we refined this structure and proved that any graph satisfying the conditions of the above approximate version of the Loebl-Komlós-Sós conjecture contains one of ten specific configurations. In this paper we embed the tree $T$ in each of the ten configurations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
77
Pages from-to
1072-1148
UT code for WoS article
000404770300024
EID of the result in the Scopus database
2-s2.0-85021955382