Bipartizing fullerenes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125710" target="_blank" >RIV/00216208:11320/12:10125710 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2012.03.028" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2012.03.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2012.03.028" target="_blank" >10.1016/j.ejc.2012.03.028</a>
Alternative languages
Result language
angličtina
Original language name
Bipartizing fullerenes
Original language description
A fullerene graph is a cubic bridgeless planar graph with twelve 5-faces such that all other faces are 6-faces. We show that any fullerene graph on n vertices can be bipartized by removing O(sqrt(n)) source edges. This bound is asymptotically optimal.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
1286-1293
UT code for WoS article
—
EID of the result in the Scopus database
—