All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A digital Jordan surface theorem with respect to a graph connectedness

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150073" target="_blank" >RIV/00216305:26210/23:PU150073 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/math-2023-0172" target="_blank" >10.1515/math-2023-0172</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A digital Jordan surface theorem with respect to a graph connectedness

  • Original language description

    After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Open Mathematics

  • ISSN

    2391-5455

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    001137180300001

  • EID of the result in the Scopus database

    2-s2.0-85182211729