A digital Jordan surface theorem with respect to a graph connectedness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150073" target="_blank" >RIV/00216305:26210/23:PU150073 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/math-2023-0172/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/math-2023-0172" target="_blank" >10.1515/math-2023-0172</a>
Alternative languages
Result language
angličtina
Original language name
A digital Jordan surface theorem with respect to a graph connectedness
Original language description
After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Mathematics
ISSN
2391-5455
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
9
Pages from-to
1-9
UT code for WoS article
001137180300001
EID of the result in the Scopus database
2-s2.0-85182211729