Path-induced closure operators on graphs for defining digital Jordan surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU135355" target="_blank" >RIV/00216305:26230/19:PU135355 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0121/math-2019-0121.xml?format=INT" target="_blank" >https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0121/math-2019-0121.xml?format=INT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/math-2019-0121" target="_blank" >10.1515/math-2019-0121</a>
Alternative languages
Result language
angličtina
Original language name
Path-induced closure operators on graphs for defining digital Jordan surfaces
Original language description
Given a simple graph with the vertex set X, we discuss a closure operator on X induced by a set of paths with identical lengths in the graph. We introduce a certain set of paths of the same length in the 2-adjacency graph on the digital line Z and consider the closure operators on Z^m (m a positive integer) that are induced by a special product of m copies of the introduced set of paths. We focus on the case m = 3 and show that the closure operator considered provides the digital space Z^3 with a connectedness that may be used for defining digital surfaces satisfying a Jordan surface theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Mathematics
ISSN
2391-5455
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
7
Pages from-to
1374-1380
UT code for WoS article
000501136200003
EID of the result in the Scopus database
2-s2.0-85076277698