All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Path-induced closure operators on graphs for defining digital Jordan surfaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU135355" target="_blank" >RIV/00216305:26230/19:PU135355 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0121/math-2019-0121.xml?format=INT" target="_blank" >https://www.degruyter.com/view/j/math.2019.17.issue-1/math-2019-0121/math-2019-0121.xml?format=INT</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/math-2019-0121" target="_blank" >10.1515/math-2019-0121</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Path-induced closure operators on graphs for defining digital Jordan surfaces

  • Original language description

    Given a simple graph with the vertex set X, we discuss a closure operator on X induced by a set of paths with identical lengths in the graph. We introduce a certain set of paths of the same length in the 2-adjacency graph on the digital line Z and consider the closure operators on Z^m (m a positive integer) that are induced by a special product of m copies of the introduced set of paths. We focus on the case m = 3 and show that the closure operator considered provides the digital space Z^3 with a connectedness that may be used for defining digital surfaces satisfying a Jordan surface theorem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Open Mathematics

  • ISSN

    2391-5455

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    7

  • Pages from-to

    1374-1380

  • UT code for WoS article

    000501136200003

  • EID of the result in the Scopus database

    2-s2.0-85076277698