Galois connections between sets of paths and closure operators in simple graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU131166" target="_blank" >RIV/00216305:26230/18:PU131166 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/downloadpdf/j/math.2018.16.issue-1/math-2018-0128/math-2018-0128.pdf" target="_blank" >https://www.degruyter.com/downloadpdf/j/math.2018.16.issue-1/math-2018-0128/math-2018-0128.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/math-2018-0128" target="_blank" >10.1515/math-2018-0128</a>
Alternative languages
Result language
angličtina
Original language name
Galois connections between sets of paths and closure operators in simple graphs
Original language description
For every positive integer n,we introduce and discuss an isotone Galois connection between the sets of paths of lengths n in a simple graph and the closure operators on the (vertex set of the) graph.We consider certain sets of paths in a particular graph on the digital line Z and study the closure operators associated, in the Galois connection discussed, with these sets of paths. We also focus on the closure operators on the digital plane Z^2 associated with a special product of the sets of paths considered and show that these closure operators may be used as background structures on the plane for the study of digital images.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Mathematics
ISSN
2391-5455
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
9
Pages from-to
1573-1581
UT code for WoS article
000458565600005
EID of the result in the Scopus database
2-s2.0-85060862528