All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Closure operators on graphs for modeling connectedness in digital spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU131387" target="_blank" >RIV/00216305:26230/18:PU131387 - isvavai.cz</a>

  • Result on the web

    <a href="http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/7904" target="_blank" >http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/7904</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2298/FIL1814011S" target="_blank" >10.2298/FIL1814011S</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Closure operators on graphs for modeling connectedness in digital spaces

  • Original language description

    For undirected simple graphs, we introduce closure operators on their vertex sets induced by sets of walks of the same lengths. Some basic properties of these closure operators are studied, with greater attention paid to connectedness. We focus on the closure operators induced by certain sets of walks in the 2-adjacency graph on the digital line Z, which generalize the Khalimsky topology. For the closure operators on Z^2 obtained as particularly defined products of pairs of the induced closure operators on Z, we formulate and prove a digital form of the Jordan curve theorem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FILOMAT

  • ISSN

    0354-5180

  • e-ISSN

    2406-0933

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    RS - THE REPUBLIC OF SERBIA

  • Number of pages

    11

  • Pages from-to

    5011-5021

  • UT code for WoS article

    000461183400018

  • EID of the result in the Scopus database

    2-s2.0-85060868606