Closure operators on graphs for modeling connectedness in digital spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU131387" target="_blank" >RIV/00216305:26230/18:PU131387 - isvavai.cz</a>
Result on the web
<a href="http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/7904" target="_blank" >http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/7904</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1814011S" target="_blank" >10.2298/FIL1814011S</a>
Alternative languages
Result language
angličtina
Original language name
Closure operators on graphs for modeling connectedness in digital spaces
Original language description
For undirected simple graphs, we introduce closure operators on their vertex sets induced by sets of walks of the same lengths. Some basic properties of these closure operators are studied, with greater attention paid to connectedness. We focus on the closure operators induced by certain sets of walks in the 2-adjacency graph on the digital line Z, which generalize the Khalimsky topology. For the closure operators on Z^2 obtained as particularly defined products of pairs of the induced closure operators on Z, we formulate and prove a digital form of the Jordan curve theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FILOMAT
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
32
Issue of the periodical within the volume
14
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
11
Pages from-to
5011-5021
UT code for WoS article
000461183400018
EID of the result in the Scopus database
2-s2.0-85060868606