Walk-set induced connectedness in digital spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126475" target="_blank" >RIV/00216305:26230/17:PU126475 - isvavai.cz</a>
Result on the web
<a href="http://carpathian.ubm.ro" target="_blank" >http://carpathian.ubm.ro</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Walk-set induced connectedness in digital spaces
Original language description
In an undirected simple graph, we define connectedness induced by a set of walks of the same lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This result is used to introduce a graph on the vertex set Z^2 with sets of walks that is obtained as the strong product of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in the graph introduced induces connectedness on Z^2 that satisfies a digital analogue of the Jordan curve theorem. It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z^2 for the study of digital images.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Carpathian Journal of Mathematics
ISSN
1584-2851
e-ISSN
1843-4401
Volume of the periodical
33
Issue of the periodical within the volume
2
Country of publishing house
RO - ROMANIA
Number of pages
10
Pages from-to
247-256
UT code for WoS article
000411780600011
EID of the result in the Scopus database
2-s2.0-85042230208