Digital Jordan curves and surfaces with respect to a graph connectedness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU143094" target="_blank" >RIV/00216305:26210/22:PU143094 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/eprint/YCG5ADY3K2UQGMSA7UGR/full?target=10.2989/16073606.2021.2011466" target="_blank" >https://www.tandfonline.com/eprint/YCG5ADY3K2UQGMSA7UGR/full?target=10.2989/16073606.2021.2011466</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2989/16073606.2021.2011466" target="_blank" >10.2989/16073606.2021.2011466</a>
Alternative languages
Result language
angličtina
Original language name
Digital Jordan curves and surfaces with respect to a graph connectedness
Original language description
We introduce a graph connectedness induced by a given set of paths of the same length. We focus on the 2-adjacency graph on the digital line Z with a certain set of paths of length n for every positive integer n. The connectedness in the strong product of two and three copies of the graph is used to define digital Jordan curves and digital Jordan surfaces, respectively. Such definitions build on an edge-to-edge tiling with triangles in the digital plane and a face-to-face tiling by cubes, prisms and pyramids in the (3D) digital space, respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quaestiones Mathematicae
ISSN
1607-3606
e-ISSN
1727-933X
Volume of the periodical
2021
Issue of the periodical within the volume
1
Country of publishing house
ZA - SOUTH AFRICA
Number of pages
16
Pages from-to
1-16
UT code for WoS article
000742468700001
EID of the result in the Scopus database
2-s2.0-85122866265