All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vectors in a box

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125728" target="_blank" >RIV/00216208:11320/12:10125728 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10107-011-0474-y" target="_blank" >http://dx.doi.org/10.1007/s10107-011-0474-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10107-011-0474-y" target="_blank" >10.1007/s10107-011-0474-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vectors in a box

  • Original language description

    For an integer d a parts per thousand yen 1, let tau(d) be the smallest integer with the following property: if v (1), v (2), . . . , v (t) is a sequence of t a parts per thousand yen 2 vectors in [-1, 1] (d) with , then there is a set of indices, 2 a parts per thousand currency sign |S| a parts per thousand currency sign tau(d), such that . The quantity tau(d) was introduced by Dash, Fukasawa, and Gunluk, who showed that tau(2) = 2, tau(3) = 4, and tau(d) = Omega(2 (d) ), and asked whether tau(d) is finite for all d. Using the Steinitz lemma, in a quantitative version due to Grinberg and Sevastyanov, we prove an upper bound of tau(d) a parts per thousand currency sign d (d+o(d)), and based on a construction of Alon and V, whose main idea goes back toHAyenstad, we obtain a lower bound of tau(d) a parts per thousand yen d (d/2-o(d)). These results contribute to understanding the master equality polyhedron with multiple rows defined by Dash et al. which is a "universal" polyhedron encod

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Programming, Series B

  • ISSN

    0025-5610

  • e-ISSN

  • Volume of the periodical

    135

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    323-335

  • UT code for WoS article

    000308647100012

  • EID of the result in the Scopus database