All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A MINIMUM DEGREE CONDITION FORCING COMPLETE GRAPH IMMERSION

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283295" target="_blank" >RIV/00216208:11320/14:10283295 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00493-014-2806-z" target="_blank" >http://dx.doi.org/10.1007/s00493-014-2806-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00493-014-2806-z" target="_blank" >10.1007/s00493-014-2806-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A MINIMUM DEGREE CONDITION FORCING COMPLETE GRAPH IMMERSION

  • Original language description

    An immersion of a graph H into a graph G is a one-to-one mapping f: V (H) -> V (G) and a collection of edge-disjoint paths in G, one for each edge of H, such that the path P (uv) corresponding to edge uv has endpoints f(u) and f(v). The immersion is strong if the paths P (uv) are internally disjoint from f(V (H)). It is proved that for every positive integer Ht, every simple graph of minimum degree at least 200t contains a strong immersion of the complete graph K (t) . For dense graphs one can say evenmore. If the graph has order n and has 2cn (2) edges, then there is a strong immersion of the complete graph on at least c (2) n vertices in G in which each path P (uv) is of length 2. As an application of these results, we resolve a problem raised by Paul Seymour by proving that the line graph of every simple graph with average degree d has a clique minor of order at least cd (3/2), where c > 0 is an absolute constant. For small values of t, 1a parts per thousand currency signta parts p

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Combinatorica

  • ISSN

    0209-9683

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

    279-298

  • UT code for WoS article

    000338324400002

  • EID of the result in the Scopus database