Complete graph immersions and minimum degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385403" target="_blank" >RIV/00216208:11320/18:10385403 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/jgt.22206" target="_blank" >https://doi.org/10.1002/jgt.22206</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22206" target="_blank" >10.1002/jgt.22206</a>
Alternative languages
Result language
angličtina
Original language name
Complete graph immersions and minimum degree
Original language description
An immersion of a graph H in another graph G is a one-to-one mapping phi:V(H)V(G) and a collection of edge-disjoint paths in G, one for each edge of H, such that the path Puv corresponding to the edge uv has endpoints phi(u) and phi(v). The immersion is strong if the paths Puv are internally disjoint from phi(V(H)). We prove that every simple graph of minimum degree at least 11t+7 contains a strong immersion of the complete graph Kt. This improves on previously known bound of minimum degree at least 200t obtained by DeVos etal. Our result supports a conjecture of Lescure and Meyniel(also independently proposed by Abu-Khzam and Langston), which is the analogue of famous Hadwiger's conjecture for immersions and says that every graph without a Kt-immersion is (t-1)-colorable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
211-221
UT code for WoS article
000427741100014
EID of the result in the Scopus database
2-s2.0-85032837279