All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complete graph immersions and minimum degree

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385403" target="_blank" >RIV/00216208:11320/18:10385403 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/jgt.22206" target="_blank" >https://doi.org/10.1002/jgt.22206</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22206" target="_blank" >10.1002/jgt.22206</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complete graph immersions and minimum degree

  • Original language description

    An immersion of a graph H in another graph G is a one-to-one mapping phi:V(H)V(G) and a collection of edge-disjoint paths in G, one for each edge of H, such that the path Puv corresponding to the edge uv has endpoints phi(u) and phi(v). The immersion is strong if the paths Puv are internally disjoint from phi(V(H)). We prove that every simple graph of minimum degree at least 11t+7 contains a strong immersion of the complete graph Kt. This improves on previously known bound of minimum degree at least 200t obtained by DeVos etal. Our result supports a conjecture of Lescure and Meyniel(also independently proposed by Abu-Khzam and Langston), which is the analogue of famous Hadwiger&apos;s conjecture for immersions and says that every graph without a Kt-immersion is (t-1)-colorable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    211-221

  • UT code for WoS article

    000427741100014

  • EID of the result in the Scopus database

    2-s2.0-85032837279