Zone diagrams in Euclidean spaces and in other normed spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125729" target="_blank" >RIV/00216208:11320/12:10125729 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00208-011-0761-1" target="_blank" >http://dx.doi.org/10.1007/s00208-011-0761-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-011-0761-1" target="_blank" >10.1007/s00208-011-0761-1</a>
Alternative languages
Result language
angličtina
Original language name
Zone diagrams in Euclidean spaces and in other normed spaces
Original language description
Zone diagrams are a variation on the classical concept of Voronoi diagrams. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition. Formally it is defined as a fixed point of a certain "dominance" map. Asano, Matouek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in the Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space. We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano et al. We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) norm.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
—
Volume of the periodical
354
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
1201-1221
UT code for WoS article
000310830600001
EID of the result in the Scopus database
—