Zone diagrams in compact subsets of uniformly convex normed spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00380717" target="_blank" >RIV/67985840:_____/12:00380717 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11856-011-0094-5" target="_blank" >http://dx.doi.org/10.1007/s11856-011-0094-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-011-0094-5" target="_blank" >10.1007/s11856-011-0094-5</a>
Alternative languages
Result language
angličtina
Original language name
Zone diagrams in compact subsets of uniformly convex normed spaces
Original language description
A zone diagram is a relatively new concept which has emerged in computational geometry and is related to Voronoi diagrams. Formally, it is a fixed point of a certain mapping, and neither its uniqueness nor its existence are obvious in advance. It has been studied by several authors, starting with T. Asano, J. Matousek and T. Tokuyama, who considered the Euclidean plane with singleton sites, and proved the existence and uniqueness of zone diagrams there. In the present paper we prove the existence of zone diagrams with respect to finitely many pairwise disjoint compact sites contained in a compact and convex subset of a uniformly convex normed space, provided that either the sites or the convex subset satisfy a certain mild condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
188
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
23
Pages from-to
1-23
UT code for WoS article
000305386100001
EID of the result in the Scopus database
—