All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The metric approximation property and Lipschitz-free spaces over subsets of R-N

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00448475" target="_blank" >RIV/67985840:_____/15:00448475 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jat.2015.06.003" target="_blank" >http://dx.doi.org/10.1016/j.jat.2015.06.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jat.2015.06.003" target="_blank" >10.1016/j.jat.2015.06.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The metric approximation property and Lipschitz-free spaces over subsets of R-N

  • Original language description

    We prove that for certain proper subsets MM of RNRN, N>=1N>=1, the Lipschitz-free space F(M)F(M) has the metric approximation property (MAP), with respect to any norm on RNRN. In particular, F(M)F(M) has the MAP whenever MM is a compact convex subset ofa finite-dimensional space. This should be compared with a recent result of Godefroy and Ozawa, who showed that there exists a compact convex subset MM of a separable Banach space, for which F(M)F(M) fails the approximation property.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0345" target="_blank" >GAP201/11/0345: Nonlinear functional analysis</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Approximation Theory

  • ISSN

    0021-9045

  • e-ISSN

  • Volume of the periodical

    199

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    29-44

  • UT code for WoS article

    000361261700003

  • EID of the result in the Scopus database