All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lipschitz-free spaces over compact subsets of superreflexive spaces are weakly sequentially complete

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00322996" target="_blank" >RIV/68407700:21240/18:00322996 - isvavai.cz</a>

  • Result on the web

    <a href="https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12179" target="_blank" >https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12179</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12179" target="_blank" >10.1112/blms.12179</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lipschitz-free spaces over compact subsets of superreflexive spaces are weakly sequentially complete

  • Original language description

    Let M be a compact subset of a superreflexive Banach space. We prove that the Lipschitz-free space F(M), the predual of the Banach space of Lipschitz functions on M, has Pełczyński's property (V*). As a consequence, F(M) is weakly sequentially complete.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    680-696

  • UT code for WoS article

    000440819400010

  • EID of the result in the Scopus database

    2-s2.0-85050404226