Complexity of necessary efficiency in interval linear programming and multiobjective linear programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125736" target="_blank" >RIV/00216208:11320/12:10125736 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11590-011-0315-1" target="_blank" >http://dx.doi.org/10.1007/s11590-011-0315-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11590-011-0315-1" target="_blank" >10.1007/s11590-011-0315-1</a>
Alternative languages
Result language
angličtina
Original language name
Complexity of necessary efficiency in interval linear programming and multiobjective linear programming
Original language description
We present some complexity results on checking necessary efficiency in interval multiobjective linear programming. Supposing that objective function coefficients perturb within prescribed intervals, a feasible point x* is called necessarily efficient ifit is efficient for all instances of interval data. We show that the problem of checking necessary efficiency is co-NP-complete even for the case of only one objective. Provided that x* is a non-degenerate basic solution, the problem is polynomially solvable for one objective, but remains co-NP-hard in the general case. Some open problems are mentioned at the end of the paper.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optimization Letters
ISSN
1862-4472
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
893-899
UT code for WoS article
000304624700007
EID of the result in the Scopus database
—