All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Checking weak optimality and strong boundedness in interval linear programming

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397333" target="_blank" >RIV/00216208:11320/19:10397333 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1VmXhFqDy-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1VmXhFqDy-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-018-3520-3" target="_blank" >10.1007/s00500-018-3520-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Checking weak optimality and strong boundedness in interval linear programming

  • Original language description

    Interval programming provides a mathematical tool for dealing with uncertainty in optimization problems. In this paper, we study two properties of interval linear programs: weak optimality and strong boundedness. The former property refers to the existence of a scenario possessing an optimal solution, or the problem of deciding non-emptiness of the optimal set. We investigate the problem from a complexity-theoretic point of view and prove that checking weak optimality is NP-hard for all types of programs, even if the variables are restricted to a single orthant. The property of strong boundedness implies that each feasible scenario of the program has a bounded objective function. It is co-NP-hard to decide for inequality-constrained interval linear programs. For this class of programs, we derive a sufficient and necessary condition for testing strong boundedness using the orthant decomposition method. We also discuss the open problem of checking strong boundedness of programs described by equations with nonnegative variables.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soft Computing

  • ISSN

    1432-7643

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    2937-2945

  • UT code for WoS article

    000465459700009

  • EID of the result in the Scopus database

    2-s2.0-85053505477