All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the optimal solution set in interval linear programming

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397331" target="_blank" >RIV/00216208:11320/19:10397331 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZcPJKUZfKM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZcPJKUZfKM</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10589-018-0029-8" target="_blank" >10.1007/s10589-018-0029-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the optimal solution set in interval linear programming

  • Original language description

    Determining the set of all optimal solutions of a linear program with interval data is one of the most challenging problems discussed in interval optimization. In this paper, we study the topological and geometric properties of the optimal set and examine sufficient conditions for its closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co-NP-hard for inequality-constrained problems with free variables. Furthermore, we prove that computing the exact interval hull of the optimal set is NP-hard for linear programs with an interval right-hand-side vector. We then propose a new decomposition method for approximating the optimal solution set based on complementary slackness and show that the method provides the exact description of the optimal set for problems with afixed coefficient matrix. Finally, we conduct computational experiments to compare our method with the existing orthant decomposition method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Optimization and Applications

  • ISSN

    0926-6003

  • e-ISSN

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    269-292

  • UT code for WoS article

    000456934700009

  • EID of the result in the Scopus database

    2-s2.0-85052533854