Distance three labelings of trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125746" target="_blank" >RIV/00216208:11320/12:10125746 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.dam.2011.02.004" target="_blank" >http://dx.doi.org/10.1016/j.dam.2011.02.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2011.02.004" target="_blank" >10.1016/j.dam.2011.02.004</a>
Alternative languages
Result language
angličtina
Original language name
Distance three labelings of trees
Original language description
An L(2, 1. 1)-labeling of a graph G assigns nonnegative integers to the vertices of G in such a way that labels of adjacent vertices differ by at least two, while vertices that are at distance at most three are assigned different labels. The maximum label used is called the span of the labeling, and the aim is to minimize this value. We show that the minimum span of an L(2, 1, 1)-labeling of a tree can be bounded by a lower and an upper bound with difference one. Moreover, we show that deciding whetherthe minimum span attains the lower bound is an NP-complete problem. This answers a known open problem, which was recently posed by King, Ras, and Zhou as well. We extend some of our results to general graphs and/or to more general distance constraints onthe labeling.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
160
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
764-779
UT code for WoS article
000302981900008
EID of the result in the Scopus database
—