All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Survival of interacting Brownian particles in crowded one-dimensional environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125885" target="_blank" >RIV/00216208:11320/12:10125885 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.3684954" target="_blank" >http://dx.doi.org/10.1063/1.3684954</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.3684954" target="_blank" >10.1063/1.3684954</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Survival of interacting Brownian particles in crowded one-dimensional environment

  • Original language description

    We investigate a diffusive motion of a system of interacting Brownian particles in quasi-one-dimensional micropores. In particular, we consider a semi-infinite 1D geometry with a partially absorbing boundary and the hard-core inter-particle interaction.Due to the absorbing boundary the number of particles in the pore gradually decreases. We present the exact analytical solution of the problem. Our procedure merely requires the knowledge of the corresponding single-particle problem. First, we calculatethe simultaneous probability density of having still a definite number (N - k) of surviving particles at definite coordinates. Focusing on an arbitrary tagged particle, we derive the exact probability density of its coordinate. Second, we present a complete probabilistic description of the emerging escape process. The survival probabilities for the individual particles are calculated, the first and the second moments of the exit times are discussed. Generally speaking, although the origi

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

  • Volume of the periodical

    136

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000300487200016

  • EID of the result in the Scopus database