Survival of interacting Brownian particles in crowded one-dimensional environment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125885" target="_blank" >RIV/00216208:11320/12:10125885 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.3684954" target="_blank" >http://dx.doi.org/10.1063/1.3684954</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.3684954" target="_blank" >10.1063/1.3684954</a>
Alternative languages
Result language
angličtina
Original language name
Survival of interacting Brownian particles in crowded one-dimensional environment
Original language description
We investigate a diffusive motion of a system of interacting Brownian particles in quasi-one-dimensional micropores. In particular, we consider a semi-infinite 1D geometry with a partially absorbing boundary and the hard-core inter-particle interaction.Due to the absorbing boundary the number of particles in the pore gradually decreases. We present the exact analytical solution of the problem. Our procedure merely requires the knowledge of the corresponding single-particle problem. First, we calculatethe simultaneous probability density of having still a definite number (N - k) of surviving particles at definite coordinates. Focusing on an arbitrary tagged particle, we derive the exact probability density of its coordinate. Second, we present a complete probabilistic description of the emerging escape process. The survival probabilities for the individual particles are calculated, the first and the second moments of the exit times are discussed. Generally speaking, although the origi
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Volume of the periodical
136
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000300487200016
EID of the result in the Scopus database
—