All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tension continuous maps-Their structure and applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126092" target="_blank" >RIV/00216208:11320/12:10126092 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ejc.2011.11.005" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.11.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2011.11.005" target="_blank" >10.1016/j.ejc.2011.11.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tension continuous maps-Their structure and applications

  • Original language description

    We consider mappings between edge sets of graphs that lift tensions to tensions. Such mappings are called tension-continuous mappings (shortly TT mappings). The existence of a TT mapping induces a (quasi)order on the class of graphs, which seems to be anessential extension of the homomorphism order (studied extensively, see Hell and Nešetřil (2004) [10]). In this paper we study the relationship of the homomorphism and TT orders. We stress the similarities and the differences in both deterministic and random settings. Particularly, we prove that TT order is universal and investigate graphs for which homomorphisms and TT mappings coincide (so-called homotens graphs). In the course of our study, we prove a new Ramsey-type theorem, which may be of independent interest. We solve a problem asked in [Matt DeVos, Jaroslav Nešetřil, André Raspaud, On edge-maps whose inverse preserves flows and tensions, in: J.A. Bondy, J. Fonlupt, J.-L. Fouquet, J.-C. Fournier, J.L. Ramirez Alfonsin (Eds.), Gr

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    1207-1225

  • UT code for WoS article

  • EID of the result in the Scopus database