Homomorphism-homogeneity classes of countable L-colored graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00508590" target="_blank" >RIV/67985807:_____/19:00508590 - isvavai.cz</a>
Result on the web
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1224/669" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1224/669</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Homomorphism-homogeneity classes of countable L-colored graphs
Original language description
The notion of homomorphism-homogeneity, introduced by Cameron and Nešetřil, originated as a variation on ultrahomogeneity. By fixing the type of finite homomorphism and global extension, several homogeneity classes, calledmorphism extension classes, can be defined. These classes are studied for various languages and axiom sets. Hartman, Hubička and Mašulović showed for finite undirected L-colored graphs without loops, where colors for vertices and edges are chosen from a partially ordered set L, that when L is a linear order, the classes HH and MH of L-colored graphs coincide, contributing thus to a question of Cameron and Nešetřil. They also showed that the same is true for vertex-uniform finite L-colored graphs when L is a diamond. In this work, we extend their results to countably infinite L-colored graphs, proving that the classes MH and HH coincide if and only if L is a linear order.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Comenianae
ISSN
0231-6986
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
3
Country of publishing house
SK - SLOVAKIA
Number of pages
6
Pages from-to
377-382
UT code for WoS article
000484349000004
EID of the result in the Scopus database
2-s2.0-85073394451