K-Triviality, Oberwolfach Randomness, and Differentiability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126358" target="_blank" >RIV/00216208:11320/12:10126358 - isvavai.cz</a>
Result on the web
<a href="http://www.mfo.de/scientific-programme/publications/owp/2012/OWP2012_17.pdf" target="_blank" >http://www.mfo.de/scientific-programme/publications/owp/2012/OWP2012_17.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
K-Triviality, Oberwolfach Randomness, and Differentiability
Original language description
We show that a Martin-Lof random set for which the effective version of the Lebesgue density theorem fails computes every K-trivial set. Combined with a recent result by Day and Miller, this gives a positive solution to the ML-covering problem (Question4.6 in Randomness and computability: Open questions. Bull. Symbolic Logic, 12(3):390-410, 2006). On the other hand, we settle stronger variants of the covering problem in the negative. We show that any witness for the solution of the covering problem, namely an incomplete random set which computes all K-trivial sets, must be very close to being Turing complete. For example, such a random set must be LR-hard. Similarly, not every K-trivial set is computed by the two halves of a random set. The work passes through a notion of randomness which characterises computing K-trivial sets by random sets. This gives a smart" K-trivial set, all randoms from whom this set is computed have to compute all K-trivial sets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Oberwolfach Preprints
ISSN
1864-7596
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
17
Country of publishing house
DE - GERMANY
Number of pages
40
Pages from-to
1-40
UT code for WoS article
—
EID of the result in the Scopus database
—